Return keys nearest to a given statistics or summary.
Usage
# S3 method for data.frame
keys_near(.data, key, var, top_n = 1, funs = l_five_num, ...)
Arguments
- .data
data.frame
- key
key, which identifies unique observations.
- var
variable to summarise
- top_n
top number of closest observations to return - default is 1, which will also return ties.
- funs
named list of functions to summarise by. Default is a given list of the five number summary,
l_five_num
.- ...
extra arguments to pass to
mutate_at
when performing the summary as given byfuns
.
Examples
heights %>%
key_slope(height_cm ~ year) %>%
keys_near(key = country,
var = .slope_year)
#> # A tibble: 6 × 5
#> country .slope_year stat stat_value stat_diff
#> <chr> <dbl> <fct> <dbl> <dbl>
#> 1 Austria 0.0695 q_75 0.0690 0.000515
#> 2 Burundi 0.321 max 0.321 0
#> 3 Eritrea -0.102 min -0.102 0
#> 4 Mali 0.0401 med 0.0403 0.000120
#> 5 Spain 0.0404 med 0.0403 0.000120
#> 6 Tajikistan 0.0199 q_25 0.0205 0.000632
# Specify your own list of summaries
l_ranges <- list(min = b_min,
range_diff = b_range_diff,
max = b_max,
iqr = b_iqr)
heights %>%
key_slope(formula = height_cm ~ year) %>%
keys_near(key = country,
var = .slope_year,
funs = l_ranges)
#> # A tibble: 4 × 5
#> country .slope_year stat stat_value stat_diff
#> <chr> <dbl> <fct> <dbl> <dbl>
#> 1 Burundi 0.321 range_diff 0.424 0.102
#> 2 Burundi 0.321 max 0.321 0
#> 3 Eritrea -0.102 min -0.102 0
#> 4 Switzerland 0.0496 iqr 0.0485 0.00116