Skip to contents

Average male heights in 144 countries from 1810-1989, with a smaller number of countries from 1500-1800. Data has been filtered to only include countries with more than one observation.

Usage

heights

Format

An object of class tbl_ts (inherits from tbl_df, tbl, data.frame) with 1490 rows and 4 columns.

Details

heights is stored as a time series tsibble object. It contains the variables:

  • country: The Country. This forms the identifying key.

  • year: Year. This forms the time index.

  • height_cm: Average male height in centimeters.

  • continent: continent extracted from country name using countrycode package (https://joss.theoj.org/papers/10.21105/joss.00848).

For more information, see the article: "Why are you tall while others are short? Agricultural production and other proximate determinants of global heights", Joerg Baten and Matthias Blum, European Review of Economic History 18 (2014), 144–165. Data available from https://datasets.iisg.amsterdam/dataset.xhtml?persistentId=hdl:10622/IAEKLA, accessed via the Clio Infra website.

Examples

# show the data
heights
#> # A tsibble: 1,490 x 4 [!]
#> # Key:       country [144]
#>    country     continent  year height_cm
#>    <chr>       <chr>     <dbl>     <dbl>
#>  1 Afghanistan Asia       1870      168.
#>  2 Afghanistan Asia       1880      166.
#>  3 Afghanistan Asia       1930      167.
#>  4 Afghanistan Asia       1990      167.
#>  5 Afghanistan Asia       2000      161.
#>  6 Albania     Europe     1880      170.
#>  7 Albania     Europe     1890      170.
#>  8 Albania     Europe     1900      169.
#>  9 Albania     Europe     2000      168.
#> 10 Algeria     Africa     1910      169.
#> # ℹ 1,480 more rows

# show the spaghetti plot (ugh!)
library(ggplot2)
ggplot(heights, 
       aes(x = year, 
           y = height_cm, 
           group = country)) + 
    geom_line()

    
# Explore all samples with `facet_strata()`
ggplot(heights,
       aes(x = year,
           y = height_cm,
           group = country)) +
  geom_line() +
  facet_strata()


# Explore the heights over each continent
ggplot(heights,
       aes(x = year,
           y = height_cm,
           group = country)) +
  geom_line() +
  facet_wrap(~continent)

  
# explore the five number summary of height_cm with `features`
heights %>% 
  features(height_cm, feat_five_num)
#> # A tibble: 144 × 6
#>    country       min   q25   med   q75   max
#>    <chr>       <dbl> <dbl> <dbl> <dbl> <dbl>
#>  1 Afghanistan  161.  164.  167.  168.  168.
#>  2 Albania      168.  168.  170.  170.  170.
#>  3 Algeria      166.  168.  169   170.  171.
#>  4 Angola       159.  160.  167.  168.  169.
#>  5 Argentina    167.  168.  168.  170.  174.
#>  6 Armenia      164.  166.  169.  172.  172.
#>  7 Australia    170   171.  172.  173.  178.
#>  8 Austria      162.  164.  167.  169.  179.
#>  9 Azerbaijan   170.  171.  172.  172.  172.
#> 10 Bahrain      161.  161.  164.  164.  164 
#> # ℹ 134 more rows